Structural and functional characterization of salmon STAT1, STAT2 and IRF9 homologs sheds light on interferon signaling in teleosts
نویسندگان
چکیده
Mammalian IRF9 and STAT2, together with STAT1, form the ISGF3 transcription factor complex, which is critical for type I interferon (IFN)-induced signaling, while IFNγ stimulation is mediated by homodimeric STAT1 protein. Teleost fish are known to possess most JAK and STAT family members, however, description of their functional activity in lower vertebrates is still scarce. In the present study we have identified two different STAT2 homologs and one IRF9 homolog from Atlantic salmon (Salmo salar). Both proteins have domain-like structures with functional motifs that are similar to higher vertebrates, suggesting that they are orthologs to mammalian STAT2 and IRF9. The two identified salmon STAT2s, named STAT2a and STAT2b, showed high sequence identity but were divergent in their transactivation domain (TAD). Like STAT1, ectopically expressed STAT2a and b were shown to be tyrosine phosphorylated by type I IFNs and, interestingly, also by IFNγ. Microscopy analyses demonstrated that STAT2 co-localized with STAT1a in the cytoplasm of unstimulated cells, while IFNa1 and IFNγ stimulation seemed to favor their nuclear localization. Overexpression of STAT2a or STAT2b together with STAT1a activated a GAS-containing reporter gene construct in IFNγ-stimulated cells. The highest induction of GAS promoter activation was found in IFNγ-stimulated cells transfected with IRF9 alone. Taken together, these data suggest that salmon STAT2 and IRF9 may have a role in IFNγ-induced signaling and promote the expression of GAS-driven genes in bony fish. Since mammalian STAT2 is primarily an ISGF3 component and not involved in IFNγ signaling, our finding features a novel role for STAT2 in fish.
منابع مشابه
STAT2/IRF9 directs a prolonged ISGF3-like transcriptional response and antiviral activity in the absence of STAT1
Evidence is accumulating for the existence of a signal transducer and activator of transcription 2 (STAT2)/interferon regulatory factor 9 (IRF9)-dependent, STAT1-independent interferon alpha (IFNα) signalling pathway. However, no detailed insight exists into the genome-wide transcriptional regulation and the biological implications of STAT2/IRF9-dependent IFNα signalling as compared with interf...
متن کاملStructural basis of STAT2 recognition by IRF9 reveals molecular insights into ISGF3 function
Cytokine signaling through the JAK/STAT pathway controls multiple cellular responses including growth, survival, differentiation, and pathogen resistance. An expansion in the gene regulatory repertoire controlled by JAK/STAT signaling occurs through the interaction of STATs with IRF transcription factors to form ISGF3, a complex that contains STAT1, STAT2, and IRF9 and regulates expression of I...
متن کاملTranscriptional regulation by STAT1 and STAT2 in the interferon JAK-STAT pathway
STAT1 and STAT2 proteins are key mediators of type I and type III interferon (IFN) signaling, and are essential components of the cellular antiviral response and adaptive immunity. They associate with IFN regulatory factor 9 (IRF9) to form a heterotrimeric transcription factor complex known as ISGF3. The regulation of IFN-stimulated gene (ISG) expression has served as a model of JAK-STAT signal...
متن کاملSTAT2-directed pathogen responses
Interferons (IFNs) are a subset of cytokines that mediate innate immune responses and provide a robust first line of defense against invading pathogens. IFNs represent a family of molecules which can be divided into three main sub-families: Type I, Type II and Type III [1]. Type I IFNs predominantly consist of IFNα and IFNβ subtypes, Type II consists of the single IFNγ type, while Type III comp...
متن کاملCanonical and Non-Canonical Aspects of JAK–STAT Signaling: Lessons from Interferons for Cytokine Responses
Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014